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Abstract—Acoustic tracking and positioning technologies using
microphones and speakers have gained significant interest for
applications like virtual reality, augmented reality, and IoT de-
vices. However, existing methods still face challenges in real-world
deployment due to multipath interference, Doppler frequency
shift, and sampling frequency offset between devices. We propose
a versatile Acoustic Tracking and Positioning (ATP) method to
address these challenges. First, we propose an iterative sampling
frequency offset calibration method. Next, we propose a Doppler
frequency shift estimation and compensation model. Finally, we
propose a fast adaptive algorithm to reconstruct the line-of-sight
(LOS) signal under multipath1. We implement ATP in Android
and PC and compare it with eight different methods. Evaluation
results show that ATP achieves mean accuracy of 0.66 cm, 0.56
cm, and 1.0 cm in tracking, ranging, and positioning tasks. It is
2×, 6×, and 5.8× better than the state-of-the-art methods. ATP
advances acoustic sensing for practical applications by providing
a robust solution for real-world environments.

Index Terms—tracking, positioning, acoustic signal, multipath,
Doppler effect

I. INTRODUCTION

The rapid development of devices on the Internet of Things

(IoT) has led to an increasing interest in the use of micro-

phones and speakers for active or passive sensing tasks such

as tracking [1]–[10], ranging [11]–[13], and positioning [14]–

[18]. Applications based on these tasks include Virtual Reality,

Augmented Reality, mobile gaming, smart appliances, etc.

Despite the availability of many methods for acoustic track-

ing, ranging, and positioning, they still encounter significant

challenges when applied to practical scenarios:

Multipath environment. A common application scenario for

acoustic sensing is the indoor environment, which suffers from

dense multipath interference [3], [19]. Multipaths significantly

hurt the accuracy of acoustic sensing systems. Single-tone-

based approaches are inherently vulnerable to multipath in-

terference, yet previous works ignore this problem [1], [4],

[10]. Although the frequency modulated continuous wave

(FMCW) can split multipath signals, the limited ultrasonic

bandwidth available in commercial devices (18 kHz to 24

kHz) prevents splitting two paths separated in cm level [5], [6].

RABIT [3] proposes to apply MUSIC [20] to resolve multipath

and enhance tracking accuracy. However, it requires knowing

the exact number of multipaths. Meanwhile, the eigenvalue

decomposition required by MUSIC is time-consuming.

1LOS signal arrives first, non-LOS signals follow under multipath scenarios.
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Fig. 1. ATP addresses multipath, Doppler Effect, and sampling frequency
offset problems for (a) tracking, (b) ranging, and (c) positioning.

Doppler frequency shift. The Doppler frequency shift (DFS)

leads to non-negligible errors for methods based on time

of flight (ToF) [3], [5], [11], [12], [14], [16]. Depending

on the signal used, there are speed search-based [12], [16]

and fractional Fourier transform (FrFT) search-based [19] ap-

proaches to estimate the Doppler effect. Those approaches are,

however, time-consuming. Other techniques [3], [5] involve

simultaneously transmitting FMCW and single-tone signals.

The received single-tone signals is analyzed to calculate the

relative moving speed. This speed is then used to com-

pensate for DFS on FMCW-based ToF measurements. As

mentioned earlier, multipath can impact the analysis of single-

tone signals, thereby reducing the accuracy of these methods.

Furthermore, simultaneous transmission of two signals can

lead to energy waste and frequency distortion [21].

Sampling frequency offset. Sampling frequency offset (SFO)

between different mobile devices causes a frequency shift of

the received signal [5]. This frequency shift further causes the

estimated ToF to drift linearly over time. The methods [1],

[5] require the devices to be static to measure the SFO every

few minutes [5]. Our experiments also demonstrate that SFO

should be frequently corrected. Thus, we need to quickly and

accurately estimate the SFO while existing methods [1], [5]

cannot meet the requirements.

To address the above challenges and make acoustic position-

related sensing more practical, we propose a versatile solution

for Acoustic Tracking, ranging, and Positioning (ATP) in

environments with severe multipath and Doppler effect as

shown in Fig. 1. The speaker transmits a short single-tone



(sent once) followed by triangular FMCW signals. And the

microphone records the signal. We first use this short single-

tone for calculating SFO. Then, we use a triangular FMCW

signal to compensate for the DFS. Finally, we reconstruct

the line-of-sight (LOS) signal and calculate accurate ToF.

The proposed method has many applications, as demonstrated

in Fig. 2, where tracking, ranging, and positioning tasks

can be performed using relative ToF, two-way ranging, and

trilateration. Our method can also be incorporated with other

FMCW-based approaches [2], [3], [5], [7], [11], [14]. They can

use our ToF results to improve their accuracy. In the design

of ATP, we address the following fundamental problems:

(1) How to accurately and efficiently resolve the FMCW

LOS signal? Conventional FMCW methods mix received and

sent signals to produce single-tones of varying frequencies.

After applying the fast Fourier Transform (FFT) and searching

for peaks, we can map single-tones’ frequencies to distances.

Due to the narrow bandwidth and limited signal length, LOS

and non-LOS (NLOS) peaks interfere. Our method efficiently

focuses on only LOS and close NLOS. It adapts to remove

NLOS interference and reconstruct the LOS signal, resulting

in an accurate LOS frequency.

(2) How to compensate Doppler frequency shift? FMCW

signals transmitted between moving devices suffer from DFS.

A common method called Doppler FFT [22] can be used for

speed estimation. However, it has a maximum unambiguous

speed limit, e.g., 21.6 cm/s for 40 ms and 20 kHz central fre-

quency acoustic FMCW signal. The triangular FMCW model

used in radar [23] can also be used for speed measurement.

However, the relatively low sound propagation speed can lead

to a significant error in the acoustic signal. Other search-based

methods [16], [19] are very time-consuming. We model the

Doppler effect on acoustic triangular FMCW and propose an

accurate and efficient method for directly calculating speed.

We use this speed to compensate DFS.

(3) How to accurately and efficiently calibrate sampling

frequency offset? We need to calibrate SFO frequently, e.g.,

through our experiments and [5], SFO keeps relatively static

in only several minutes. The method [5] keeps devices static

while sending FMCW and monitors distance changes to esti-

mate SFO. This method is time-consuming because it needs to

send many chirps. We measure the SFO based on the received

single-tone’s frequency. To minimize the overhead, we propose

utilizing an iterative frequency estimation method, which is

much more efficient than FFT with zero padding.

Our main contributions include:

• We investigate theoretically and experimentally the fun-

damental limitations of existing acoustic tracking, rang-

ing, and positioning systems in real scenarios. We reveal

that these limitations lead to substantial measurement

errors, which existing methods do not address well.

• We propose ATP, a novel versatile acoustic sensing

approach that can handle SFO, DFS, and multipath

interference in real-world scenarios. ATP can be used

in different acoustic sensing tasks, including active and

passive tracking, ranging, and positioning.

• We implement ATP and evaluate its performance for

tracking, ranging, and localizing tasks using smartphones

and speakers. The results demonstrate that ATP achieves

mean accuracy of 0.66 cm, 0.56 cm, and 1.0 cm in

tracking, ranging, and positioning, respectively. It is 2×,

6×, and 5.8× better than state-of-the-art methods.

II. PRIOR ARTS AND LIMITATIONS

Acoustic tracking techniques can be divided into single-

tone-based [1], [4], [7], [8], [10], FMCW-based [2], [3], [5],

[6], [11], [13], [24] and other categories [8], [16], [25]–[28].

Here, we provide a brief introduction to those techniques and

their limitations. Suppose a speaker is emitting a signal sT (t),
and a moving microphone with a relative speed of v(t) is

continuously recording sT (t). The signal travels through n
paths with a time-varying path length of di(t). The sound

propagation speed is c. Assume i = 1 indicates the LOS path

and i = 2...n indicates the NLOS paths.

A. Single-tone-based Approaches

We show the single-tone-based tracking approaches (i.e.,

sT (t) = cos(2πf0t)). We have the recorded signal

sR(t) =

n
∑

i=1

Ai cos(2πf0(t−
di(t)

c
)), (1)

where Ai is the amplitude, f0 is single-tone’s frequency sent.

1) Tracking Based On Frequency Change: In AA-

Mouse [10], sR(t) in a duration T time window w(t) is

sR(t)w(t) =

{

∑n
i=1 Ai cos(2πf0(t−

di(t)
c

)) if t < |T/2|

0 if t > |T/2|
. (2)

Applying FFT to Eq. (2), it has

SR(f) ∗W (f) =

n
∑

i=1

Aie
jφi sinc(f − f0(1−

vi(t)

c
)), (3)

where W (f) is the Fourier transform of the rectangular win-

dow, which is sinc function sinc(f) = sin(πf/T )
(πf/T ) . It calculates

f1(t) = argmax |SR(f)∗W (f)|. Also, f1(t) = f0(1−
v1(t)
c ).

So v1(t) = c(1 − f1(t)
f0

). The relative moving distance is

calculated by d1(t) =
∫

v1(t)dt.
Due to multipath interference, f1(t) cannot be accurately

measured by argmax |SR(f) ∗W (f)|, leading to a nonnegli-

gible tracking error.

2) Tracking Based On Phase: LLAP [4] multiplies the

sR(t) by cos(2πf0t) and − sin(2πf0t) and passes the result

through a low-pass filter. It has

IR(t) = LPF(sR(t) cos(2πf0t)) =
n
∑

i=1

A′

i cos(−2πf0
di(t)

c
), (4)

QR(t) = LPF(sR(t)(− sin(2πft))) =
n
∑

i=1

A′

i sin(−2πf0
di(t)

c
). (5)

If n = 1, it has d1(t) = −c · arctan (QR(t)/IR(t))
(2πf0)

[4]. If n > 1,

it cannot solve d1(t) based on IR(t) and QR(t).



3) Tracking Based On Phase Without Mixing: Vernier [1]

avoids the FFT, mixing, and filtering steps for improving the

refresh rate. First, it counts the number of local maximum

Nmax in the time window [0, T ]. So, the phase change φ̃ can

be approximated as φ̃ = Nmax ·2π. Then, the moving distance

is calculated by Nmaxλ− cT . However, Vernier cannot work

in multipath environments as the local maximum is distorted.

Summary of limitations. (1) Multipath: single-tone-based

approaches suffer from multipath interference. Multipaths will

distort the signal’s frequency and phase. Thus, an error will

occur in the estimated distance. (2) Error accumulation: single-

tone-based tracking produces relative moving distance. It

suffers from error accumulation over time.

B. FMCW-based Approaches

Many approaches resort to FMCW or the so-called chirp

signal to address the multipath. When sT (t) = cos(2π(f0t+
1
2k0t

2)), the recorded signal is

sR(t) =

n
∑

i=1

Ai cos(2π(f0(t−
di(t)

c
)+

1

2
k0(t−

di(t)

c
)2)), (6)

where f0 is starting frequency and k0 is chirp rate.

By multiplying sT (t) and sR(t) and passing the result

through a low pass filter, we can obtain the mixed signal

mR(t) =
n
∑

i=1

Ai cos(2π(f0
di(t)

c
+

1

2
k0(2t

di(t)

c
− (

di(t)

c
)2))). (7)

1) Frequency Based ToF: In CAT [5], mR(t) in a time

window w(t) can be written as:

mR(t)w(t) =

{

∑n
i=1 Ai cos(2π

k0di(t)
c

t+ φi) if t < |T/2|

0 if t > |T/2|
, (8)

where w(t) is the rectangle window, φi is the static phase

(assume that di(t) remains constant in rectangle window

duration T ). It applies FFT to Eq. (8), and have

MR(f) ∗W (f) =
n
∑

i=1

Aie
jφi sinc(f −

k0di(t)

c
), (9)

where W (f) is the sinc function sinc(f) = sin(πf/T )
(πf/T ) which is

the Fourier transform of the rectangular window. By searching

for the highest n peaks and their corresponding fi in |MR(f)∗
W (f)|, it calculates di(t) =

cfi
k0

. If n = 1, this approach can

achieve high accuracy by padding long enough zeros in FFT.

When n > 1, n sinc functions interfere with each other and

cause a peak offset to fi, so di is inaccurate.

2) Cross-correlation Based ToF: BeepBeep [11] utilizes

the correlation property of signals. The magnitude of cross-

correlation between sT (t) and sR(t) is

ψ(t) =

n
∑

i=1

Aiρ sinc(πB(t−
di(t)

c
)), (10)

where ρ is determined by B and T , and sinc(x) = sin(x)
x [29].

It calculates ToF by ti = argmax(ψ(t)). Then, it calculates

di = cti. When n > 1, these n sinc functions interfere and

create an offset to ti, consequently leading to an offset of di.

3) Phase Based ToF: PDF [2] directly calculates the fre-

quency of mR(t) by dividing the phase difference by the time

difference. When n = 1, it calculates f1 =
φmR

(t1)−φmR
(t2)

t1−t2

and d1(t) =
cf1
k0

. However, it’s prone to multipath and noise,

just like the aforementioned phase-based methods.

4) MUSIC Based ToF: RABIT [3] uses MUSIC, a super-

resolution algorithm for separating sine waves. It first com-

putes the auto-correlation matrix of mR(t). It next conducts

eigenvalue decomposition on this matrix to separate the signal

and noise components. It then constructs a pseudo-spectrum

with noise components and a defined steering vector. It locates

peaks in the pseudo-spectrum to determine f1. It calculates

d1 = cf1
k0

. However, the MUSIC algorithm has a time

complexity of O(N3), much slower than the FFT algorithm’s

O(N logN). Additionally, prior knowledge of the number of

multipath components is required for MUSIC.

Summary of limitations. (1) Multipath: FMCW-based

approaches suffer from interference from NLOS. (2) Doppler

effect: FMCW approaches either require mixing sT (t) with

sR(t) (CAT, PDF, and MUSIC) or correlating sT (t) with sR(t)
(BeepBeep). They require that k0 in sR(t) is the same as in

sT (t). Doppler effect changes k0 in the received sR(t), causing

an error in the distance result.

C. Other Approaches

Some works attempt to use Received signal strength [27],

[28], [30]. This strength can be utilized for low-precision

tracking and positioning purposes. Other works attempt to

use channel impulse response (CIR), which represents channel

information. CIR can also be used to analyze propagation

delay [8], [25], [26].

III. SYSTEM DESIGN

Our system is designed to achieve the following objectives:

• Anti-multipath interference: It should perform well in

multipath environments.

• Anti-Doppler effect: It should work well with fast-moving

devices (e.g., 1m/s).

• Accurate: It should be accurate enough to produce results

with mm-level error.

• Fast: It should be fast enough to provide online results.

A. System Overview

In our system, the speaker (e.g., those on the smartphone,

computer, or smart speaker) transmits the audio signal to the

microphone. The audio signal consists of short single-tones

and triangular FMCWs.

The system consists of four components, as shown in Fig. 2.

(1) SFO estimation: we use short single-tones to calibrate

SFO. This step is only performed at the beginning of tracking.

(2) DFS estimation: we use cross-correlation to calculate

the coarse delay τ1 of triangular FMCW. Then, we use our

model to calculate relative moving speed v and residual delay

τ2. (3) LOS estimation: we use v to construct a triangular

FMCW under the Doppler effect. Then, we align and mix the

constructed FMCW with the received FMCW and apply the
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Fig. 3. Sampling frequency offset problem.

adaptive LOS reconstruction algorithm to the mixed signal.

The algorithm reconstructs accurate LOS frequency. Finally,

we map LOS’s frequency to residual delay τ3. (4) Tracking

and Positioning: We use estimated SFO to correct this distance.

The corrected distance is c(τ1 + τ2 + τ3 − SFO · T ), where

T is tracking duration. The distance is used for tracking,

ranging (based on two-way ranging), and positioning (based

on trilateration).

B. Sampling Frequency Offset Estimation

SFO occurs when the transmitter and receiver have different

clocks, leading to errors in ToF measurements. When sending

or receiving the same number of samples, the sender and

receiver will experience different time durations. Fig. 3 shows

an example to demonstrate the problem. In this scenario, a

speaker sends a chirp with n samples. The sampling frequency

of the transmitter is Fs, while the sampling frequency of the

receiver is Fs
1+SFO . The delay of chirp1, chirp2, ..., chirpm will

add up to τ1, 2τ1, ...,mτ1.

To further show the necessity of fast and accurate estimation

of SFO, we transmit a 20 kHz single-tone by different devices,

including smartphones, earphones, and loudspeakers. We use

a Xiaomi Mi 11 to record the signal. By utilizing FFT with

a sliding window of 10 seconds and a zero padding length of

5·107, we obtain the frequency offset of the received signal, as

shown in Fig. 4. When the received frequency offset is 0.0096

Hz, the accumulated error in one minute is 0.0096/20000 ·
60 · 346 = 1 cm. According to the measured frequency offset

in Fig 4, Oppo Find x5 Pro has an error of up to 5 cm in a

minute. We also show that SFO can vary across time, even for

the same device. For example, we repeat the experiment of the

Philips Speaker SPA20 two times and find that the calculated

frequency offset varies significantly in those two times.

We calculate the SFO =
f ′
0−f0
f0

, where f0 is the sent

frequency and f ′0 is the received frequency. We may use FFT to

calculate f ′0. However, to measure SFO accurately, we need to
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Fig. 4. The received frequency offset of a 20kHz single-tone transmitted by
different devices. The black dashed line represents an error of 1 cm/min.

pad many zeros in FFT. We analyze the consumption of FFT.

Assume the tracking period is T , the distance measurement

error ∆d is

∆d = cT · SFO, (11)

where c is the sound propagation speed. Given f0 = 20 kHz

and c = 346 m/s, if we want to keep tracking errors under

1 cm/min, we should keep the SFO error in 4.817 · 10−7.

It means the frequency estimation error should be less than

4.817 · 10−7 · 20000 = 0.0096 Hz. So, the FFT bin resolution

should be higher than 2 ·0.0096 = 0.0192 Hz. When Fs = 48
kHz, the single-tone sequence length should be longer than

Fs/0.0192 = 2.5 · 106 (i.e., 1/0.0192 = 52.08 s). Performing

a 2.5 · 106 point FFT is time and power-consuming.

To reduce overhead, we design an SFO estimation method

based on iterative frequency estimation of received single-

tones [31]. Assume the transmitted signal is K single-tones

with frequency fi. We set fi+1 − fi = 1 kHz to minimize

the interference between them when doing discrete Fourier

transform (DFT) [4], [5]. The received signal is

s(n) =

K
∑

i=1

Aie
j(2π

f′
i

Fs
n+φi), (12)

where Ai is the attenuation, f ′i = fi(1+SFO) is the received

frequency, and φi is the initial phase.

We summarize our method in Algorithm 1. First, we apply

FFT without zero padding to s(n) and find K peak indexes as

p̂1, p̂2, ..., p̂K in line 1. Then, we iteratively estimate an accu-

rate offset δ̂i in line 6. The received single-tones’ frequencies

are calculated as
p̂i+δ̂Q

N Fs in line 8. Finally, SFO is calculated

by transmitted fi and estimated received f̂ ′i in line 10.

We prove that our algorithm can estimate the received

frequency with an error of order N−2 for K = 1. We omit

the subscript i for simplicity. The core of Algorithm 1 lies in

accurately estimating f ′, which can be expressed as

f ′ =
p̂+ δ

N
Fs, (13)

where N is the number of samples, p̂ is the index of the

maximum value of |FFT{s(n)}| and δ lies in the range

[−0.5, 0.5]. We aim to obtain an accurate estimation δ̂ of δ.

We have the DFT coefficients

S±0.5 =

N−1
∑

n=0

s(n)e−j2π p̂±0.5
N

n. (14)



Algorithm 1 SFO Estimation

Input: s(n) and fi
Output: SFO
1: p̂1, p̂2, ..., p̂K = K argmax(|FFT{s(n)}|)
2: for i = 1 to K do

3: δ̂0 = 0
4: for q = 1 to Q do

5: S±0.5 =
∑N−1

n=0 s(n)e
−j2π

p̂i+δ̂q−1±0.5

N
n

6: δ̂q = 1
2 Real{

S0.5+S−0.5

S0.5−S−0.5
}+ δ̂q−1

7: end for

8: f̂ ′i =
p̂i+δ̂Q

N Fs
9: end for

10: SFO = 1
K

∑K
i (

f̂ ′
i−fi
fi

)
11: return SFO

Substituting the expression of s(n) for K = 1 into Eq. (14),

we obtain a geometric series, and have

S±0.5 = Aejφ
N−1
∑

n=0

ej2π
δ∓0.5

N
n = Aejφ

1 + ej2πδ

1− ej2π
δ∓0.5

N

. (15)

For (δ ∓ 0.5) ≪ N , we can approximate ej2π
δ∓0.5

N as 1 +
j2π δ∓0.5

N by Taylor series expansion. Eq. (15) becomes

S±0.5 = −NAejφ
1 + ej2πδ

j2πδ

δ

δ ∓ 0.5
= b

δ

δ ∓ 0.5
. (16)

So we have 1
2 Real{

S0.5+S−0.5

S0.5−S−0.5
} = δ. We substitute estimated

δ to Eq. (13) to obtain f̂ ′. The bias resulting from Taylor

series expansion approximation from Eq. (15) to Eq. (16) is of

order N−2. This bias is minimized from iterative estimating

δ̂ in Q times. This algorithm is based on DFT, so we can

extend it to K > 1 when f1, f2, ..., fK is separated by a

distance. Moreover, Algorithm 1 has a time complexity of

O(KQN logN), where Q,K ≪ N .

C. Doppler Frequency Shift Estimation

We leverage the triangular chirp for Doppler frequency shift

compensation in this step. A complex triangular chirp consists

of an up-chirp with increasing frequency followed by a down-

chirp with decreasing frequency, which can be expressed as

s′T (t) =

{

ej(2π(f0t+
1
2
k0t

2)) if 0 ≤ t < T

ej(2π((f0+k0T )(t−T )− 1
2
k0(t−T )2)) if T ≤ t < 2T

, (17)

where f0 is the starting frequency, k0 is the up-chirp’s chirp

rate, and T is the time duration of the up-chirp/down-chirp.

In practice, a speaker transmits the real version of s′T (t),
i.e., sT (t) = Real{s′T (t)}. When the microphone moves with

relative speed v, the parameters of received signal sR(t) will

change to










f ′0 = f0(1 + v/c)

T ′ = T/(1 + v/c)

k′0 = k0(1 + v/c)2
. (18)

The ToF/delay can be estimated by cross-correlating the

sR(t) and sT (t). However, the Doppler effect changes the

Time
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Fig. 5. Doppler frequency shift estimation. (a) Coarsely aligned signal sR(t)
and s′T (t). They have different chirp rates due to the Doppler effect. (b)

Mixing sR(t) and s′
T
(t) produces two chirps, smix1 and smix2, with very

low chirp rates. We estimate the speed by analyzing their frequencies.

received chirp’s parameters and causes a ToF estimation error.

We need to estimate v and compensate the Doppler effect.

Traditional FMCW radar method [22] can estimate the veloc-

ity, but it has a maximum speed limit (e.g., 21.6 cm/s for 40

ms and 20 kHz central frequency acoustic FMCW signal).

Speed search-based [12], [16] and FrFT search-based [19]

approaches are time-consuming. We propose a novel method

to estimate moving speed and ToF by solving a cubic and

a linear equation. First, we use an FFT-based matched filter

(Cross-Correlation) to estimate the coarse ToF of sR(t). The

match filter’s output R(τ) can be denoted as

R(τ) = F−1{Conj{F{sT (t)}}F{sR(t)}}, (19)

where τ is the time delay, F, F−1 and Conj are FFT, IFFT,

and complex conjugation operations, respectively. The time

complexity of Eq. 19 is O(N logN). We search for the coarse

delay τ1 = argmax(|R(τ)|).

Due to the Doppler effect, τ1 differs from the real delay [16].

Now, we show how to calculate the accurate time delay. We

first align sR(t) and s′T (t) by τ1. Then we mix sR(t) and

s′T (t) (conjugate of s′T (t)) to obtain two chirps smix1 and

smix2 with a low chirp rate as shown in Fig. 5. Their starting

and ending frequencies f0mix1, f1mix1, f0mix2 and f1mix2 are



















f0mix1 = −(f0 + k0τ2) + f ′0
f1mix1 = −(f0 + k0T ) + f ′0 + k′0(T − τ2)

f0mix2 = −(f0 + k0T − k0(τ2 + T ′ − T )) + f ′0 + k′0T
′

f1mix2 = −f0 + (f ′0 + k′0T
′ − k′0(2T − τ2 − T ′))

,

(20)

where τ2 is the remained time offset between sR(t) and

s′T (t) after aligning them with τ1. In fact, we cannot directly

access f0mix1, f1mix1, f0mix2, and f1mix2 from the FFT result

of smix1 and smix2. These Two mixed signals with very

low chirp rates will generate two peaks fpkmix1 and fpkmix2 in

the frequency domain. We obtain fpkmix1 =
f0
mix1+f1

mix1

2 and

fpkmix2 =
f0
mix2+f1

mix2

2 . By summing the frequencies of the
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Fig. 6. Multipath interference elimination. (a) The received triangular chirps
under three paths. (b) The result after mixing and FFT (blue background part
in (a)). There is only one peak as three paths interfere. (c) Our algorithm
iteratively reconstructs the real frequency of these three paths.

two peaks and multiplying the result by 2, and subsequently

substituting Eq. 20, we obtain

2(fpk
mix1 + fpk

mix2) = 4f ′

0 − 4f0 + 3k′0T
′ + k0T

′ − 3k0T − k′0T. (21)

Substituting Eq. (18) into Eq. (21), we have

2(fpkmix1 + fpkmix2) = 4
vf0
c

+ 3k0T (1 +
v

c
)

+
k0T

1 + v
c

− 3k0T − k0T (1 +
v

c
)2. (22)

We eliminate the variable τ2 by the above method, leaving only

v as unknown in Eq. (22). Eq. (22) is a cubic equation of v.

We quickly obtain the relative speed v between the transmitter

and receiver by solving it.

After solving v, we also have a linear equation of τ2 as

2(fpkmix1 − fpkmix2) = 3k0T (1 +
v

c
)
2
− 3k0T (1 +

v

c
)− 2k0τ2

+ k0T − 2k0τ2(1 +
v

c
)
2
−

k0T

(1 + v
c )
,

(23)

We solve Eq. (23) to obtain τ2.

D. LOS Estimation

Now, we have a finer estimation of ToF τ1 + τ2 by com-

pensating the Doppler effect. Next, we show how to address

multipath interference and calculate the final ToF.

Some works attempt to use deep learning methods to

separate mutual interference between multiple signals, yet

deep learning-based methods require significant computational

resources and are susceptible to environmental changes [13],

[32]–[36]. Other Model-based methods, e.g., MUSIC, have

also been used to split multipath [3]. It requires knowing an

accurate number of paths and has O(N3) time complexity.

We only care about the arrival time of the LOS path. Signal

traveling through the LOS path will arrive first, followed by

NLOS. So, We iteratively reconstruct LOS and close NLOS

to restore the accurate delay of the LOS signal.

Our multipath interference elimination workflow is shown in

Fig. 6. We substitute v to Eq. 18 and use produced f ′0, T
′, k′0

to construct a transmitted signal s′DT (t) under the Doppler

effect. Next, we align sR(t) with s′DT (t) using the estimated

delay of τ1 + τ2. Once aligned, we mix complex conjugate

of s′DT (t) and sR(t) to produce single-tones mR(t). Then we

apply Algorithm 2 to mR(t) to calculate LOS’s delay τ3.

Algorithm 2 LOS Estimation

Input: mR(t), chirp rate k′0 of s′DT (t)
Output: LOS delay τ3
1: Initialize adaptive ratio R, stop criteria E.

2: ŝ = mR(t), i = 1, h = [ ]
3: repeat

4: ecurr = INT MAX /*A large value*/

5: repeat

6: fi, ai, φi = argmax(|FFT{ŝ− h[1 : i− 1]}|)
7: h[i] = ai exp(j(2πfit+ φi))
8: for l = 1 to i− 1 do

9: fl, al, φl = argmax(|FFT{ŝ−h[1 : l−1]−h[l+
1 : i]}|) /*Refine the estimated single-tones*/

10: h[l] = al exp(j(2πflt+ φl))
11: end for

12: epre = ecurr
13: ecurr =

√
∑

t (ŝ− h[1 : i])2

14: until |ecurr − epre| < E
15: i = i+ 1
16: until |ai−1| < R ·max(|a|)

17: return
min(f)

k′
0

In Algorithm 2, the adaptive ratio R, is used as a threshold

to stop our algorithm. E controls the number of iterations that

single-tones’ parameters are updated. The algorithm iteratively

estimates the parameters of potential single-tone signals in

line 6. This estimation is performed by canceling estimated

single-tones and then applying FFT to estimate the remaining

strongest single-tone. After estimating one single-tone, we

refine previously estimated single-tones in line 9. We repeat

this refining process until the power change of the estimated

single-tones below E in line 14. Next, we start the new

estimating and refining steps until the next estimated single-

tone’s power is below a threshold controlled by R in line 16.

Finally, we choose the minimum estimated frequency as LOS’s

frequency because LOS arrives first. This frequency is finally

mapped to delay τ3 = min(f)
k′
0

.

Our adaptive LOS reconstruction algorithm has several

advantages. First, there is no need to know the number of

multipaths beforehand. Our algorithm monitors the power of

single-tones around the LOS. It stops once the next recon-

structed single-tone’s power is below a threshold controlled by

R in line 16. Second, our method can solve the peaks merging

problem shown in Fig. 6.(b). Third, when signals’ sidelobes

add up, there may be a fake peak with considerable height

before LOS. Our method can eliminate these fake peaks by

iteratively removing the main peaks. Last, the time complexity

of Algorithm 2 is O(MN logN), where M is the FFT called

times, and M ≪ N .

E. Tracking, Ranging, and Positioning

Combining all the individual steps, Algorithm 3 presents

the pseudo-code for our final system. The output d is used for

tracking, ranging, and positioning.



Algorithm 3 ATP system

Input: recorded signal s(n), transmitted single-tones’ fre-

quencies f , transmitted triangular FMCWs’ parameters

f0, T, k0, working time T , and sound speed c
Output: distance d
1: SFO = SFO Estimation(s(n), f )

2: τ1, τ2, v = DFS Estimation(s(n), f0, T, k0)

3: Construct f ′0, T
′, k′0, s

′
DT (t) using v. Mix Conj{s′DT (t)}

and sR(t) to obtain mR(t).
4: τ3 = LOS Estimation(mR(t), k

′
0)

5: d = (τ1 + τ2 + τ3 − SFO · T )c

1
2
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Fig. 7. Floor map of experiment environment and experiment devices.

IV. IMPLEMENTATION

We implement ATP in the remote mode on the Android

platform based on LibAS framework [37]. LibAS is a cross-

platform framework for developing acoustic sensing apps. The

recorded audio in Android is sent to a PC in real time. We

perform signal processing using MATLAB on a PC with AMD

Ryzen 7 5800H CPU, and the results are sent back to mobile

phones in real time. In the SFO estimation stage, we use

1 s single-tones ranging from 18 to 22 kHz with a 1 kHz

interval for all methods. In the tracking stage, ATP uses 40 ms

triangular FMCW from 18 kHz to 22 kHz. Other FMCW-based

methods use the same FMCW and a 23 kHz single-tone to

compensate for the Doppler effect. Single-tone-based methods

use the same single-tons as used in the SFO estimation stage.

For all FFT operations, we pad the signals to 20 times their

original length with zeros. We use Q = 3,K = 5 in

Algorithm 1, and E = 10−3, R = 0.3 in Algorithm 2. We

implement ATP for tracking, ranging, and positioning based

on relative distance change [5], two-way ranging [11], and

trilateration [38].

V. EVALUATION

A. Evaluation Setup

The experiment environment and devices are shown in

Fig. 7. We conducted our experiments in an office environment

with normal working activities and environmental noise. We

have conducted experiments including SFO estimation, 1-D

tracking with different durations, speeds, distances, and noise

TABLE I
SOLVING MULTIPATH TIME CONSUMPTION

Algo 2 MUSIC (M=40) MUSIC (M=80) MUSIC (M=160)

8.0 ms 12.6 ms 41.9 ms 172.2 ms

levels, 2-D tracking, ranging, and positioning. We ensure

LOS between speakers and microphones because sound waves

hardly penetrate obstacles. We use a stepper motor to control

the receiver’s movement precisely at sub-millimeter levels. To

track movement at varying speeds, we use a reciprocating

motor with a fixed 15 cm moving range and a speed range

of 0 to 100 cm/s. We use a laser distance meter with sub-

millimeter precision to obtain ground-truth measurements for

ranging and localization.

B. Comparison

We compare our method, ATP, with the existing approaches.

• AAMouse [10]: an acoustic tracking method by measur-

ing single-tone’s frequency change.

• LLAP [4]: an acoustic tracking method by measuring

single-tone’s phase change.

• Vernier [1]: an acoustic tracking method by measuring

single-tone’s phase change without mixing step.

• CAT [5]: an acoustic tracking method by mapping mixed

signal’s frequency to distance.

• BeepBeep [38]: an acoustic ranging and positioning

method by Cross-Correlation. We use the FMCW signal.

• BeepBeep-GCC-PHAT [15]: an improved version of

BeepBeep using generalized cross-correlation phase

transform (GCC-PHAT) instead of Cross-Correlation.

• PDF [2]: an acoustic tracking method by calculating

mixed signal’s frequency based on phase without FFT

and then mapping this frequency to distance.

• RABIT [3]: an acoustic tracking method utilizing MUSIC

to estimate mixed signal’s frequency and then map-

ping this frequency to distance. We set RABIT’s auto-

correlation order M to 40 to achieve the online working

goal according to the time consumption shown in Table.I.

We further compare ATP with ATP|, ATP†, and ATP‡.

• ATP|: ATP without SFO estimation and compensation.

• ATP†: ATP without DFS estimation and compensation.

• ATP‡: ATP without LOS estimation and reconstruction.

It should be noted that AAMouse, LLAP, and Vernier are

based on single-tone and can only be used for tracking. In

contrast, CAT, BeepBeep, BeepBeep-GCC-PHAT, PDF, and

RABIT approaches are based on FMCW and can be used in

tracking, ranging, and positioning.

C. Sampling Frequency Offset Estimation

We first measure the SFO estimation accuracy. We set one

device to transmit a 20 kHz single-tone and another to record

the signal. We vary the distance between them.

The accuracy of SFO estimation depends on the precise

calculation of the received single-tone frequency. Thus, we
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TABLE II
SFO ESTIMATION TIME AND MEMORY CONSUMPTION

Algo 1 2.5 · 106 pts FFT 5 · 106 pts FFT 2.5 · 107 pts FFT

1.8 ms 187.5 ms 242.5 ms 1893.5 ms

16 kb 39140 kb 78284 kb 391388 kb

compare the frequency estimation error of Algorithm 1 to

that of FFT with zero-padding in Fig. 8. Our method’s mean

frequency estimation error is 0.0055 Hz, while FFT method

with zero-padding of lengths 2.5 · 106, 5 · 106, and 2.5 · 107

has mean errors of 0.009, 0.0063, and 0.0053 Hz, respectively.

With a longer length of zero padding, FFT has less error

in frequency estimation but higher computation overhead.

We further examine the time and memory consumption for

different methods, as shown in Table.II. To achieve equivalent

accuracy, FFT with 2.5 ·107 points requires 1052× more time

and 24462× more memory than our method.

We further conduct a long-time 1-D tracking experiment,

separating the speaker and microphone at 3 m, 5 m, and 8 m,

as shown in Fig 9. ATP’s tracking error remains relatively

consistent across varying tracking durations. While ATP|’s

tracking error increases linearly over time because of SFO. The

tracking error of ATP is less than 0.78 cm, whereas ATP| can

have a tracking error of up to 14.4 cm when tracking for 2.5

minutes. ATP| has a larger error in 5 m than 8 m because SFO

causes a larger error than an increase in distance. Our SFO

estimation and compensation method effectively minimizes the

accumulation of tracking errors over time.

D. 1-D Tracking Accuracy

In this experiment, we measure the 1-D tracking error. We

vary the distance between the microphone and the speaker. The

moving distance is 20 cm, and the moving speed is 2.6 cm/s,

resulting in a negligible impact from the Doppler effect.

Fig. 10 shows that ATP has an error under 0.57 cm in 3 m

and an error under 0.94 cm in 8 m, respectively. ATP is better

than all others as it overcomes multipath interference through

Algorithm. 2. ATP‡ is impacted by multipath, resulting in a

2.6× higher error rate than ATP. As the distance increases,

the Signal-to-noise ratio (SNR) decreases, and the multipath’s

impact strengthens. So, the tracking error of all methods

increases. Within a 3 m range, single-tone-based methods

AAmouse, LLAP, and Vernier typically show errors under

0.66 cm, similar to ATP and consistent with their respective

research papers [1], [4], [10]. This is because there is typically

a lighter influence from multipath at close distances. When

tracking at ranges greater than 3 m, the performance of single-

tone-based methods degrades significantly. This is because

there is increasing interference from multipath signals, and

these methods are inherently vulnerable to multipath. PDF can

work well in clean environments. However, its performance is

poor for varying distances in the presence of multipath inter-

ference, as it employs phase and time differences to calculate

frequency, making it vulnerable to noise and interference. The

performance of the MUSIC-based RABIT method is similar

to the FFT-based CAT method, as the auto-correlation order

M is limited due to the O(N3) time complexity of MUSIC.

CAT and Correlation methods also suffer from multipath, and

their tracking error increases.

The significant errors observed for all methods at 6 m

suggest that multipath interference is more significant at that

distance, potentially overshadowing the effects of distance

variation.

E. 1-D Tracking With Different Speeds

In this experiment, we show the tracking error at different

moving speeds. We set the distance between the microphone

and the speaker to 5 m and control the moving speed of the

speaker. Fig. 11 shows the result. ATP has a mean error of

1.3 cm, which is better than other methods as it overcomes

the Doppler effect and multipath interference by our speed

estimation method and LOS reconstruction algorithm. ATP†

without DFS estimation has an 8.5× higher error and ATP‡

without LOS estimation has a 3.5× higher error than ATP.

The error of different methods is stable to varying speeds

because all those methods consider the Doppler effect: (1)

single-tone-based approaches leverage the Doppler effect for

tracking, (2) Other FMCW-based methods utilize single-tone
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for compensating the Doppler effect, and (3) ATP compensates

Doppler effect by triangular FMCW. Our triangular FMCW-

based Doppler best compensates the Doppler effect among

those methods, especially in multipath environments. What’s

more, it does not need to send additional single-tones.

F. 2-D Tracking Accuracy

In this experiment, we measure the 2-D tracking error. We

separate two speakers by 50 cm. We move the receiver by 5 cm

from each distance. Fig. 12 shows the tracking error. Our novel

Doppler estimation and LOS reconstruction methods result in

ATP having a mean error of 1.6 cm, and this error is better

than that of all other methods. ATP is also 1.7× better than

ATP‡. The relationship between tracking errors for different

methods is similar to that in 1D tracking.

G. Ranging Accuracy

We compare our method with ATP‡, BeepBeep, and GCC-

PHAT-based BeepBeep. The result is shown in Fig. 13. ATP

has an average ranging error of 0.56 cm. ATP‡, BeepBeep,

and BeepBeep-GCC-PHAT have an average error of 4.1 cm,

3.6 cm, and 3.4 cm, respectively. ATP overcomes multipath

interference, resulting in a better result.

H. Positioning Accuracy

We implement a trilateration-based positioning system by

placing three anchors. Then, we place a smartphone in five

locations, as depicted in Fig. 7. The accuracy of trilateration

relies on the accuracy of ranging. ATP with better ranging

accuracy has a positioning error of 1.0 cm, as shown in

Fig. 14. ATP‡, BeepBeep, and BeepBeep-GCC-PHAT have a

positioning error of 7.4 cm, 5.9 cm, and 6.2 cm, respectively.

I. Impact Of Moving Distance On Tracking Error

We measure the 1-D tracking error of different moving

distances for ATP. As shown in Fig. 15, ATP’s tracking error

remains relatively consistent with different moving distances.

It is because our FMCW-based tracking method produces each

distance based on ToF. Each estimated distance is independent,

so there is no cumulative error.

J. Impact Of Noise Intensity On Tracking Error

We vary the noise volume to different levels, i.e., around

40 dB (library room), 50 dB (air conditioner’s noise), 60 dB

(human talking), and 70 dB (noisy street). The result is shown

in Fig. 16. We can see that the error increases slightly as the

noise level increases. It remains small for all distances.

K. Latency

The average time consumption for SFO estimation, DFS

estimation, LOS estimation, and other components is 1.8 ms,

3.1 ms, 8 ms, and 0.9 ms, respectively. Since SFO estimation is

performed only once initially, ATP’s latency is 3.1+8+0.9 =
12 ms when processing a 40 ms triangular FMCW, enabling

it to work online.

VI. CONCLUSION

We presented ATP, an efficient and accurate tracking, rang-

ing, and positioning approach. We theoretically and experi-

mentally analyze the limitations of prior arts. We overcome the

fundamental challenges of existing approaches, including mul-

tipath interference, Doppler frequency shift, and sampling fre-

quency offsets. We implement our prototype on smartphones

and conduct extensive experiments to evaluate the performance

of ATP. The result shows that ATP can achieve mean accuracy

of 0.66 cm, 0.56 cm, and 1.0 cm in tracking, ranging, and

positioning, respectively. We believe ATP’s design can support

various mobile applications, from video gaming to VR and

AR.
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