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ABSTRACT

The ability of smart devices to determine their locations is the basis

for many applications. We present LEAD, a system which can simul-

taneously Locate Everyday smArt Devices, such as smartphone,

smartwatch, and headphone, with only one speaker. The principle

of LEAD is leveraging the reflected path (e.g., by the wall) for single

speaker based localization. Previous works cannot simultaneously

locate multiple devices with unknown orientations. To overcome

the challenges, we estimate the direction difference and distance

difference between the LoS and Echo paths and combine them to

derive the device location. Given limited sound bandwidth, we de-

velop a high-resolution method to estimate the distance difference.

To address the sparsity of microphones with large inter-distance, we

generate virtual microphones on smart devices to estimate the direc-

tion difference. We reduce the computation overhead by searching

the decomposed space for distance and direction. We extensively

evaluate LEAD’s performance in different scenarios. The results

show a median relative distance error of 2.0 cm, relative direction

error of 0.7°, and localization error of 0.29 m across various settings.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting; • Information systems→ Location based services.

KEYWORDS

Smart devices, acoustic signals, localization, single speaker, echo

ACM Reference Format:

Guanyu Cai, Jiliang Wang. 2024. Locating Your Smart Devices with a Single

Speaker. In ACM Conference on Embedded Networked Sensor Systems (SenSys

’24), November 4–7, 2024, Hangzhou, China. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3666025.3699320

1 INTRODUCTION

Smart devices, such as smartphones, smartwatches, headphones,

VR glasses, and smart speakers, have become integral to our daily

life. Their seamless integration into our routines has transformed

communication, work, and entertainment. The global market for

these smart devices is expected to reach 1.4 trillion by 2032 [1].

Locating a smart device also reveals the user’s location when

the device is being worn or carried. Such location is crucial for

realizing the anywhere-and-anything sensing paradigm, enabling

the development of various innovative applications, including (1)
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Figure 1: (a) LEAD localizes smart devices using the direction

difference and distance difference between the LoS and Echo.

(b) Each device records and analyzes sound to get location.

Smart building applications. When users enter or leave a specific

area, their smart devices, whether worn or carried, can automati-

cally control appliances based on the location. For example, smart

devices can send commands to turn lights, air conditioners, and TVs

on or off. (2) Smart health applications. Based on locations, worn or

carried smart devices can record the time users spend in each area.

Health applications like [2] can analyze the data to generate de-

tailed daily activity reports, e.g., time spent by users working at their

desks. With detailed reports, applications can provide more under-

lying suggestions for user’s health. (3) Smart control applications.

Smart devices can adapt their functions according to locations. For

instance, when close to the bed, smartphones automatically switch

to silent mode to avoid disturbing users’ sleep, and headphones

switch to soft music at a lower volume.

To realize the above applications, we use acoustic localization

technology for its cm-level accuracy and widely used microphones

and speakers on smart devices [3, 4]. The smart speaker is the most

attractive anchor among smart devices, almost fixed in a specific

position.

Traditionally, numerous acoustic localization approaches have

been proposed based on estimating sound propagation character-

istics, such as Time-of-Flight (ToF) [3, 5–9], Direction-of-Arrival

(DoA) [10–14], and Time-Difference-of-Arrival (TDoA) [15–17].

They require multiple spatially dispersed speakers or microphones,

at least two for ToF and DoA and three for TDoA in the 2D plane.

In addition, ToF methods require clock synchronization between

microphones and speakers. However, the above approaches are

impractical because many rooms have only one smart speaker.

Recently, researchers proposed methods leveraging nearby wall

reflection (denoted as Echo) for acoustic localization [12–14]. These

methods utilize the microphone array to record and localize sources

by analyzing their line-of-sight (LoS) and Echo DoAs. However,

they cannot work for multiple sources as they cannot extract DoAs

https://doi.org/10.1145/3666025.3699320
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and match them with the right sources with the low signal-to-

noise ratio (SNR) and the lack of source features. As a result, these

methods only localize two devices at most [13].

We propose LEAD, which uses a single speaker to localize a large

number of smart devices simultaneously. As shown in Fig. 1, the

speaker plays inaudible ultrasound, and each target device records

and analyzes the sound to get its location. This passively listening

paradigm supports any number of devices to assess the location

service. We first estimate DoAs (including LoS and Echo of the

nearby wall) from the speaker to the target device. However, it is

challenging to locate the device based on the DoA as the orientation

of the device is unknown. To solve this problem, we estimate the

relative distances1 of the LoS and Echo paths. Finally, we propose a

model to localize the device based on the direction and distance dif-

ferences between the LoS and Echo paths. We address the following

challenges while taking the idea into practice:

(1)How to locate the device with unknown device orientation? DoA-

based localization requires accurately measuring the microphones’

orientation, which is impractical in our scenario, as detailed in § 2.1.

We find that the direction difference between LoS and Echo remains

unchanged when the device rotates. We can still not locate the de-

vice solely based on the direction difference. Then, we leverage

the distance difference between LoS and Echo to narrow down the

device location. Theoretically, we can use the distance differences

between LoS and multiple Echoes to locate the device, given the

position of the reflectors. However, resolving the ambiguity of dif-

ferent reflectors is difficult, as detailed in § 2.2. Meanwhile, some

Echoes may have a low SNR, which degrades the localization accu-

racy. We finally calculate the device location by solving a nonlinear

system of equations determined by the direction difference and

distance difference in § 3.7.

(2) How to improve accuracy with limited bandwidth and micro-

phones? Firstly, the narrow inaudible bandwidth (ranging from 18

:�I to 22 :�I ) on most devices significantly limits the distance

accuracy. Our design maximizes bandwidth usage with a super-

resolution algorithm. We let the speaker broadcast the chirp signal,

sweeping the entire bandwidth. Next, we correlate the received

signal to find the coarse relative arrival time. Then, we align the

received signal with this rough arrival time and dechirp it to tones,

which can significantly improve the SNR. In § 3.4, we design an

algorithm with a subsampling technique to estimate the relative

distances without sacrificing bandwidth for the tone signals. Sec-

ondly, the microphones, designed for voice recording, have low

direction accuracy with ultrasonic sound. There are usually only

two microphones with inter-space larger than the ultrasonic half

wavelength _
2 , e.g., 0.86 cm on 20 kHz. Existing super-resolution

Direction-MUSIC [18] or 2D-MUSIC [19] fail to estimate direction

because they require an inter-mic distance of less than half wave-

length. In § 3.5, we divide a chirp into sub-chirps to generate virtual

microphones to meet the microphone distance requirement. Then,

we estimate accurate directions with virtual microphones.

(3) How to reduce the computation overhead? The above pro-

cess of distance and direction calculation incurs a high overhead.

Typically, the process takes many seconds, which hinders real ap-

plications [12]. The most time-consuming steps in 2D-MUSIC are

1Later, “distance” refers to “relative distance” due to lack of synchronization.
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Figure 2: (a) DoA localization requires knowing the micro-

phones’ orientation \< to derive \1 and \2 for triangulation.

(b) TDoA localization requires matching ToFs to the right

virtual speakers for trilateration.

singular value decomposition (SVD) and direction-distance search-

ing. To speed up the process, we estimate distances and directions

in two steps with different granularities. For distance estimation in

§ 3.4, we subsample the signal to decrease the SVD overheadwithout

compromising bandwidth. Then, we efficiently search for LoS and

Echo distances in the 2D fine-distance and coarse-direction space.

For direction estimation in § 3.5, we decompose 2D-MUSIC to de-

crease the SVD overhead while keeping virtual speakers. Then, we

efficiently search for LoS and Echo directions in the fine-direction

space with estimated distances. Through the above process, we

reduce the runtime by tens of times.

Our contributions are summarized as follows:

• To the best of our knowledge, LEAD is the first-of-its-kind system

to localize a large number of smart devices with only one speaker.

It solves the problem of insufficient speaker and unknown device

orientation using the proposed distance and direction difference

localization model.

• We propose a method to address the physical limitations of com-

mercial microphones on smart devices designed for voice record-

ing. We further significantly improve the accuracy and reduce

the computation overhead.

• We implement LEAD with a speaker and extensively evaluate its

performance under various devices and settings. Our system can

localize devices with a median error of 0.29 m, which is 62.8%,

and 71.6%, 57.4% less than VoLoc [14], GCC-PHAT [20], and

Distance-MUSIC [6, 18].

2 PRIMER

This section introduces the foundations and limitations of DoA and

TDoA localization with a single speaker.

2.1 DoA Localization

Fig. 2(a) shows the DoA localization method using a nearby wall

reflection under the far-field assumption [21]. We can use cross-

correlation-based methods [5, 20] or 2D-MUSIC [19] to estimate

the �>�1 and �>�2 for LoS and Echo arrival direction. Given the

microphone array’s relative direction to the wall \< , we can cal-

culate out \1 = 270◦ − �>�1 − \< and \2 = −90◦ + �>�2 + \< .
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We assume the side between the real and virtual speaker is known.

Then \1-side-\2 determines a unique triangle and the location of

microphones.

Limitations: Determining the microphones’ orientation \<
requires additional sensors like a digital compass and IMU, which

may not be available on some devices. Moreover, the typical errors

of angle measurement using a digital compass and IMU can be over

10° [22–25]. This angle error will result in a significant location

error of meters level [12].

2.2 TDoA Localization

Fig. 2(b) shows the TDoA localization method. Using nearby wall

reflections, we can create multiple virtual speakers. Then, we cal-

culate the relative ToFs of LoS and Echoes to locate the target. We

need to associate the ToFs with their corresponding virtual speak-

ers and calculate the TDoA (ToFs difference) of every two pairs

of speakers. TDoAs are used to obtain hyperbolas. The device is

located in the intersections of these hyperbolas.

Limitations: The ToFs cannot be associated with their corre-

sponding virtual speakers because they only have time-domain

information and lack spatial information. For example, the shortest

)>�1 is from the real speaker. But we cannot tell which virtual

speaker )>�2 is associated with. Arbitrarily associating will gener-

ate ambiguous locations that cannot be distinguished. Meanwhile,

this method requires at least two high-SNR Echoes with known

reflector locations, limiting its deployment.

2.3 DoA and TDoA Estimation Algorithms

Researchers utilized cross-correlation-based algorithms to estimate

DoA and TDoA [5, 20]. To improve accuracy, they proposed super-

resolution algorithms, e.g., MUSIC family [18, 26]. Distance-MUSIC

can calculate the distance to the source [6]. Additionally, 2D-MUSIC

can be used for a microphone array to calculate distance and direc-

tion jointly, providing better accuracy compared to cross-correlation

and Distance-MUSIC [19]. We build our algorithm on 2D-MUSIC

due to its outstanding accuracy, with an error quite close to the

Cramer-Rao lower bound [19].

Limitations: Cross-correlation and Distance-MUSIC are ap-

plied independently to each microphone, resulting in more ambigu-

ous results and higher errors [27]. 2D-MUSIC is designed to work

assuming that microphones are spaced by less than half-wavelength.

However, typical smart device microphones are designed for au-

dible sound and spaced at a larger distance than the ultrasonic

half-wavelength. As a result, different direction signals may cause

the same phase shift across the microphones. Given that 2D-MUSIC

relies on mapping the phase to direction, such a one-to-many map-

ping leads to direction ambiguities. Furthermore, 2D-MUSIC is

time-consuming due to the cubic time complexity of SVD and the

square area of search space, making it unsuitable for time-sensitive

applications.

3 SYSTEM ARCHITECTURE

Fig. 3 illustrates LEAD’s architecture. The smart speaker broadcasts

the pre-defined ultrasonic chirp signal. Each device records the

LoS and Echo signal, along with noise, and runs LEAD locally for

simultaneous localization. LEADworks in four steps: (1) We estimate

Direction 𝜃ଵ, 𝜃ଶ
Distance 𝑅ଵ, 𝑅ଶDistance 𝑅ଵ, 𝑅ଶ𝑇𝑜𝑛𝑒𝑠
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Figure 3: LEAD system overview.

the coarse LoS delay and align the sent chirp with the received

signal. Then, we perform dechirp to extract tones for enhancing

SNR. (2)We perform 2D-MUSICwith subsampling to tones to search

for the accurate relative distance of LoS and Echo. Our subsampling

method maintains the distance resolution and drastically decreases

runtime. We further shrink the direction search space to speed up

this step. (3) We perform our decomposed 2D-MUSIC algorithm

to create virtual microphones for eliminating direction ambiguity

and estimating accurate directions. To improve efficiency, we limit

the distance search space to LoS’s and Echo’s neighbor distances

estimated in the previous step. (4) We localize the device with the

direction and distance differences of the LoS and Echo paths. The

distance difference restricts the device’s location to a hyperbola,

and the direction difference determines its location to a point on

the hyperbola.

3.1 Signal Design

Our smart speaker periodically plays the linear chirp signal, whose

frequency increases linearly with time. Chirp is commonly used in

radar and sonar systems due to its superior ranging performance[28].

It can be modeled as:

B (C) = 4 9 (2c (50C+
�C2

2) ) ) (1)

where 50 is the chirp’s starting frequency, � is the bandwidth, and)

is the chirp duration. Speaker transmits the real part of B (C), which

is Real{B (C)} = cos(2c (50C +
�C2

2) )).

The sampled signal received by the device’s first microphone is:

A (<) =

!∑

;=1

U; cos (2c (50 (<ΔC − g; ) +
�(<ΔC − g; )

2

2)
)) +F (<) (2)

where< = 0 . . . " − 1 is the sample number, ; indicates the ;-th

path, U; is the attenuation, ΔC is the sampling interval, g; is the

signal propagation delay, andF (<) is noise.

3.2 Preprocessing

Coarse LoS delay estimation: The sampled B (C) is

B (<) = 4 9 (2c (50<ΔC+
� (<ΔC )2

2) ) ) . (3)
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The cross-correlation profile between B (<) and A (<) is:

� (g) = Hilbert{IFFT{FFT{A (<)} · conj{FFT{B (<)}}} (4)

where Hilbert, IFFT, FFT, and conj are Hilbert transform, inverse

Fast Fourier Transform, Fast Fourier Transform, and complex con-

jugate transform, respectively.

We calculate the delay g1 = argmaxg ( |� (g) |). Then, we deter-

mine the LoS path delay g!>( = argming ( |� (g) | > V · |� (g1) |),

where we set V = 0.3 for working out of the box. The insight is

that the LoS signal always arrives first, while it may have lower

power than the Echo signal due to the multipath fading. To achieve

the best LoS detection performance, the constant false alarm rate

(CFAR) algorithm can be used.

Alignment and dechirp: We extend Eq. (2) to multiple micro-

phones, that is

r(=,<) =

!∑

;=1

U; cos (2c (50 (<ΔC − g; ) +
�(<ΔC − g; )

2

2)
))

· 4 9
2c 52
2 =3 cos\; +w(=,<)

(5)

where = = 0 . . . # − 1 is the microphone number, 52 = 50 +
1
2� is

central frequency of B (<), 2 is sound speed, \; is arrival direction

of ;-th path, andw(=,<) is noise. We first align B (<)−1 and r(=,<)

with the delay g!>( . Then we dechirp r(=,<) into tones, that is

Y(=,<) = LPF{B (< − g!>( )
−1 · r(=,<)}

=

!∑

;=1

U ′
;
4 92c

'; �

2) <ΔC4 9
2c 52
2 =3 cos\; +w

′ (=,<)
(6)

where LPF is the low pass filter, U ′
;
is the complex attenuation, ';

is the relative distance, and w
′ (=,<) is noise.

3.3 Basic 2D-MUSIC

For convenience, we use one-based indexing for matrix Y next. We

reshape matrix Y in Eq. 6 to the vector Ỹ

Ỹ = [Y(1, 1 . . . "), . (2, 1 . . . "), . . . ,Y(#, 1 . . . ")]⊤1×"# . (7)

We have.

Ỹ = AX +W (8)

A =

[

a
′ (\1, '1) , a

′ (\2, '2) , . . . , a
′ (\!, '!)

]

"#×!
(9)

X =

[

U ′1, U
′
2, . . . , U

′
!

]⊤

1×!
(10)

a(\; , '; ) =[

uniform # mics
︷                                             ︸︸                                             ︷

1, 4 9
2c 52
2 3 cos\; , . . . , 4 9

2c 52
2 (#−1)3 cos\; ]⊤1×#

· [1, 4 92c
'; �

2) ΔC , . . . , 4 92c
'; �

2) ("−1)ΔC

︸                                      ︷︷                                      ︸

" samples

]1×"

(11)

where A is the direction-distance steering matrix consisting of the

steering vector a′ (\; , '; ). a
′ (\; , '; ) is a vector reshaped from the

matrix a(\; , '; ).W is the noise matrix.

The basic 2D-MUSIC algorithm is performed as follows. We first

obtain Ỹ’s auto-correlation matrix '
Ỹ
by

R
Ỹ
= ỸỸ

H (12)

where H is Hermitian transpose. Then we perform SVD to R
Ỹ

and obtain eigenvalues Λ = [_1 . . . _"# ] and eigenvectors E =

[e1 . . . eMN]. We partition E to obtain ES and EN, which corre-

sponding to the ! largest and "# − ! smallest eigenvalues of E,

respectively. ES spans the signal subspace and EN spans the noise

subspace. Finally, we evaluate the 2D-MUSIC spectrum with

% (\, ') =
1

a′ (\, ')HENEN
Ha′ (\, ')

(13)

We then search for possible source directions \ and distances '

where % (\, ') has a large value.

2D-MUSIC’s limitations:

Two shortcomings limit the widespread use of 2D-MUSIC in

ultrasonic sensing.

Firstly, the overhead of 2D-MUSIC is high because of its time-

consuming SVD operation and ample (\, ') search space. Its time

complexity is O("3# 3 +�'"2# 2), where"3# 3 is for SVD and

�'"2# 2 is for (\, ') search. Here, � and ' are the search space

sizes of \ and ', respectively. We use 18-22 kHz chirps with 20 ms

(i.e.," = 960) duration. The receiving device has two microphones

(i.e., # = 2). We set the search space to � = 180 for 0° to 180°

direction and ' = 320 for 0m to 3.2 m distance to achieve a 1° and 1

cm resolution, respectively. The computation time is 1.21 s for SVD

and 80.2 s for search.

Secondly, 2D-MUSIC requires microphones spaced by less than

half the wavelength to avoid direction ambiguity. The number of

direction ambiguity is 23
_20 kHz

−1. The larger themicrophone distance

and higher the signal frequency, the more ambiguities.

3.4 Distance Estimation

The computation overhead analyzed in § 3.3 is not affordable for

most devices. We show our optimizations. First, we set a small� to

decrease the search space and drastically reduce the result search

time. Second, to speed up SVD and result search, we subsample

Ỹ to obtain [Ỹ1, Ỹ2, . . . , Ỹ? ], where ? is the subsampling rate. We

have

Ỹ8 =[Y(1, (8, 8 + ?, . . . , 8 + :?)), . . . ,

Y(#, (8, 8 + ?, . . . , 8 + :?))]⊤
1×(:+1)#

(14)

a(\; , '; ) =[

uniform # mics
︷                                             ︸︸                                             ︷

1, 4 9
2c 52
2 3 cos\; , . . . , 4 9

2c 52
2 (#−1)3 cos\; ]⊤1×#

· [1, 4 92c
'; �

2) ?ΔC , . . . , 4 92c
'; �

2) :?ΔC

︸                                  ︷︷                                  ︸

:+1 samples

]1×(:+1)

(15)

R
Ỹ
=

1

?

?
∑

8=1

R
Ỹ8

=

1

?

?
∑

8=1

Ỹ8 Ỹ
H
8 (16)

where 8 = 1 . . . ? , and : = ⌊
"−?
? ⌋. Now R

Ỹ
and EN are 1

? of their

original size. The time complexity is reduced to O("
3# 3+'"2# 2

?2 ).

The distance resolution is maintained because Ỹ8 contains all the

information of Ỹ if the sampling frequency �B
? is greater than 2';�

2)

according to the Nyquist Sampling Theorem, where 2';�
2) is the

tone’s frequency. Here, �B is typically 48 kHz for most microphones.

We set � = 5 to balance between performance and overhead. We

set ? = 10 to minimize the overhead while meeting the Nyquist
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(a) 𝑑 = 5 cm and 𝑝 = 1 (c) 𝑑 = 15 cm and 𝑝 = 1(b) 𝑑 = 5 cm and 𝑝 = 2 (d) 𝑑 = 15 cm and 𝑝 = 2

Ambiguity
estimated

Ground truth Ambiguity
Ground truth

estimated Ground truth Ambiguity

Ambiguity Ambiguity

Figure 4: An example of ambiguity in 2D-MUSIC spectrums. 3 is microphone distance and ? is the number of sub-chirp. By

setting a proper ?, our method eliminates direction ambiguity in (a); the result is shown in (b). For 3 = 15 cm in (c), ? = 2 is

insufficient to eliminate all ambiguous directions; the result is shown in (d).

(a) (b)

Figure 5: (a) The fine-distance and coarse-direction spectrum.

(b) The squeezed spectrum indicates the LoS, human Echo,

and wall Echo.

Sampling Theorem. The total runtime of SVD and search is reduced

from 81.4 s to 39.1 ms.

We illustrate an actual spectrum in Fig. 5(a), which is obtained

while a human is holding the device and processed using the above

steps.We then squeeze the 2D spectrum bymean\ % (\, ') operation

and show the result in Fig. 5(b). The peaks in Fig. 5(b) indicate the

received signal’s energy. We identify the LoS as the first high peak

with the smallest distance. We then identify the Echo reflected

by the wall. The wall Echo arrives after LoS with a delay shorter

than twice the speaker-to-wall propagation time. Additionally, the

reflection power is proportional to the reflector’s size. Thewall Echo

typically has considerable energy with a high peak in the spectrum.

For example, the wall’s Echo peak is higher than the human Echo

peak, as shown in Fig. 5(b). Finally, we select wall Echo with the

range constraint and a power threshold. The threshold can be a

percentage of the LoS. CFAR or other data-driven algorithms can

also obtain it. We denote the LoS and Echo distance as '1 and '2.

3.5 Direction Estimation

As depicted in Fig. 4(a) and 4(c), direction ambiguity exists because

multiple directions result in the same phase shift. One way to elimi-

nate direction ambiguity is to increase the number of microphones

[27]. While using customized hardware and modifying produced

devices is not feasible. Instead, we can create virtual microphones.

Our insight is that the steering vector in Eq. (11) depends on _ =

52
2 ,

so we can use different 52 to create virtual microphones. Because

the chirp’s frequency increases with time, we can use sub-chirps

with different central frequencies to create virtual microphones.

The central frequency of each segment is 521 , . . . , 52? . The steering

vector a(\; , '; ) changes to

a(\; , '; ) =[

non-uniform ?# mics
︷               ︸︸               ︷

Φ
0,Φ1, . . . ,Φ#−1 ]⊤1×?#

· [1, 4 92c
'; �

2) ?ΔC , . . . , 4 92c
'; �

2) :?ΔC

︸                                  ︷︷                                  ︸

:+1 samples

]1×(:+1)

(17)

Φ = [4 9
2c 521

2 3 cos\; , 4 9
2c 522

2 3 cos\; , . . . , 4 9
2c 52?

2 3 cos\; ]1×? (18)

where : = ⌊
"−?
? ⌋. The microphone numbers increase to ?# . Ac-

cording to Eq. (18), we calculate the equivalent microphone spacing

between Φ(0) and Φ(1). The space is Δ3 =

522
521

3 − 3 . To satisfy

Δ3 <
_
2 =

2
252

, frequency offset should satisfy Δ5 = 522 − 521 <
5212

2523
.

For 18-22 kHz chirp with 521 > 18000 Hz, we establish an upper

bound of Δ5 < 1029, 1543.5, 3087 Hz. This results in ? ≥ 4, 3, 2 for

3 = 0.15, 0.1, 0.05 m, respectively.

To verify our ideas, we set ? = 2, which is enough to eliminate

ambiguities for 3 = 0.05 m but not for 3 = 0.15, and show example

spectrums in Fig. 4(b) and 4(d). We successfully eliminated the DoA

ambiguity in Fig. 4(b), while an ambiguity remains at the top of

Fig. 4(d) because 3 = 0.15 m requires ? ≥ 4. Theoretically, the

equivalent distance between 8-th and (8 −1)-th virtual microphones

is
528 −528−1

528
3 . The direction ambiguity is removed because virtual

microphones are spaced under _
2 and the non-uniform spaced real

and virtual microphones [27].

We can choose ? according to the distance between microphones.

A larger ? increases the direction resolution because of more virtual

microphones but decreases the distance resolution. To strike a

balance, we advise using a minimum ? = ⌈
2523�
5212

⌉ which exactly

generates virtual microphones spaced by less than _
2 .

The overhead of the above design equals the basic 2D-MUSIC

because the large direction-distance search space and steering ma-

trix in Eq. (17) and Eq. (11) have the same large size. We show how

to reduce it. First, we determine '1 and '2 estimated in § 3.4 are
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Figure 6: A example of decomposed 2D-MUSIC profile. 3 is

microphone distance and ? is the number of sub-chirp. A

large enough ? eliminates ambiguous DoAs.

distances of the LoS and Echo. We only search directions for the

distance near '1 and '2. Next, we show our decomposed 2D-MUSIC.

We separate Ỹ and a into ? sub vectors and matrices and perform

2D-MUSIC for each Ỹ8 and a8 , where 8 = 1 . . . ? and : = ⌊
"−?
? ⌋.

We have

Ỹ8 =[Y(1, ((8 − 1): + 1 . . . 8: + 1)), . . . ,

Y(#, ((8 − 1): + 1 . . . 8: + 1))]⊤
1×(:+1)#

(19)

a8 (\; , '; ) =[

uniform # mics
︷                                               ︸︸                                               ︷

1, 4 9
2c 528

2 3 cos\; , . . . , 4 9
2c 528

2 (#−1)3 cos\; ]⊤1×#

· [1, 4 92c
'; �

2) ΔC , . . . , 4 92c
'; �

2) :ΔC

︸                               ︷︷                               ︸

:+1 samples

]1×(:+1)

(20)

where 528 is the central frequency of Ỹ8 . We calculate R
Ỹ8

= Ỹ8 Ỹ
H
8

and apply SVD to construct the noise subspace. Then, we calculate

the spectrum %8 (\, ') using Eq. (13). We obtain the final spectrum as

% (\, ') =
∏?

8 %8 (\, '). The \1 and \2 for the real and virtual speaker

are calculated as argmax % (\, '1) and argmax % (\, '2). Now R
Ỹ8

and EN8 are
1
? of their original size. The time complexity is reduced

to O("
3# 3

?2 + �"2# 2

? ). When set ? = 5, the runtime of direction

estimation decreases from 81.4 s to 102.1 ms.

We show an example of our decomposed 2D-MUSIC in Fig. 6.

For microphone spacing, 3 = 0.05 m and 3 = 0.15 m, the ground-

truth LoS and Echo directions are near 52° and 76°, respectively. We

use 2 and 4 sub-chirps for 3 = 0.05 m and 4 and 5 sub-chirps for

3 = 0.15 m. The highest peaks’ DoA are close to the ground-truth

DoA, demonstrating that our decomposed 2D-MUSIC eliminates

ambiguities. Our method works because we generate virtual mi-

crophones with different spacings. Since different spacings lead to

different sub-spectrums and suffer from ambiguities in different

DoAs, stacking these sub-spectrums helps us filter out ambiguous

directions.

3.6 Tailored Spatial Smoothing

The sound played by the speaker traveling from multiple paths is

highly correlated [12, 27, 29, 30], which significantly degrade the

performance of our distance and direction estimation algorithms.

Recall Eq. (12) and Eq. (13), we apply SVD to R
Ỹ
and construct

M
ic

ro
ph

on
es

Time Samples and Slide Direction

𝐘෩(1,𝑘 + 1)……𝐘෩(1, 𝑙ଵ)……𝐘෩(1,2)𝐘෩(1,1)
…
…

…
…𝐘෩(2,1)

…
…

…
…

…
… 𝐘෩(𝑁,𝑘 + 1)……𝐘෩(𝑁, 𝑙ଵ)…………𝐘෩(𝑁, 1)

Figure 7: Data matrix and Scanning window for 2D smooth-

ing.

Algorithm 1 Distance estimation algorithm.

Input: Tones Y in Eq. (6)

Output: LoS distance '1 and Echo distance '2
1: Select the subsampling rate ? and obtain Ỹ8 in Eq. (14), Ỹ8,@ in

Eq. (21), R
Ỹ8

in Eq. (22), and ã(\; , '; ), which is the subset of

a(\; , '; ) in Eq. (15).

2: Calculate R
Ỹ
in Eq. (16) using R

Ỹ8
and apply SVD to obtain EN.

3: Select a coarse \ ’s search space and calculate % (\, ') in Eq. (13)

using ã(\; , '; ) and EN.

4: Calculate '1, '2 under range and threshold constraints.

5: return '1, '2

the noise subspace EN. When the signals in Ỹ are correlated, R
Ỹ

becomes a singular matrix. As a result, EN cannot accurately be

expressed by the"#−! smallest eigenvalues of E, and the spectrum

% (\, ') is consequently inaccurate.

Fortunately, spatial smoothing [29] was proposed to decorrelate

signals and generate a full-rank R
Ỹ
. We tailor the smoothing tech-

nique and incorporate it into our subsampled and decomposed 2D

case. The concept is shown in Fig. 7. We reshape Ỹ8 to a matrix,

which contains # rows and : + 1 columns. We define a window of

size # × ;1 and slide this window from left to right of the matrix.

We have & = : − ;1 + 2 positions/sub-matrix in the time samples

dimension. Next, we reshape each sub-matrix to a vector similar to

Ỹ8 , that is

Ỹ8,@ = [Ỹ8 (1, @ . . . @ + ;1 − 1), . . . , Ỹ8 (#,@ . . . @ + ;1 − 1)]⊤
1×;1#

(21)

where @ = 1 . . . & . The smoothed covariance matrix is

R
Ỹ8

=

1

&

&
∑

@=1

Ỹ8,@Ỹ
H
8,@ (22)

The steering vectors in Eq. (15) and Eq. (20) also change to their

sub-vector ã(\; , '; ) and ã8 (\; , '; ) of size # × ;1, respectively.

Incorporating the spatial smoothing, we summarize our algo-

rithm for estimating distance in Algorithm 1 and direction in Algo-

rithm 2.
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Algorithm 2 Direction estimation algorithm.

Input: Tones Y in Eq. (6), LoS '1, and Echo '2
Output: LoS direction \1 and Echo direction \2
1: Select the decomposing rate ? and calculate Ỹ8 in Eq. (14),Ỹ8,@

in Eq. (21), R
Ỹ8

in Eq. (22) and ã8 (\; , '; ), which is the subset of

a8 (\; , '; ) in Eq. (20).

2: Apply SVD to R
Ỹ8

to obtain EN8 .

3: Select search space ' = ['1, '2] and calculate %8 (\, ') in Eq.

(13) using ã8 (\; , '; ) and EN8 .

4: Calculate the final spectrum % (\, ') =
∏?

8 %8 (\, ').

5: \1 = argmax % (\, '1) and \2 = argmax % (\, '2).

6: return \1, \2

𝐹ଶ = (−𝑑, 0)
Virtual Speaker

𝐹ଵ = (𝑑, 0)
Real Speaker

y-axis 𝑀 = (𝑥, 𝑦)
𝚫𝜽

x-axis

Hyperbola

𝑹𝟏𝑹𝟐

Figure 8: Localization model.

3.7 Localization Model

We show how to use the direction difference Δ\ = |\1 − \2 | and

distance difference Δ' = |'1 −'2 | between the LoS and Echo paths

for localization in the 2D plane.

We show the localization model in Fig. 8. Assume we know

the distance 3 between the speaker and the nearby wall. 3 can be

manually or automatically measured using methods proposed by

[12, 14]. The locations of the real and virtual speakers are �1 =

(3, 0) and �2 = (−3, 0), respectively. We have |"�1 −"�2 | = Δ'

and ∠�1"�2 = Δ\ , where " = (G,~) is the device’s unknown

location. Given the above conditions,"’s coordinate is restricted

by a hyperbola, whose focuses are �1 and �2. The hyperbola is

G2

( Δ'2 )2
−

~2

32 − ( Δ'2 )2
= 1. (23)

We also have

cos(Δ\ ) =
"�1

2 +"�2
2 − �1�2

2

2"�1 ·"�2

=

2G2 + 2~2 − 232

2
√

(G + 3)2 + ~2 ·
√

(G − 3)2 + ~2
.

(24)

Location (x, y) is fully determined by the system of equations in

Eq. (23) and Eq. (24). Next, we show how to derive the closed-form

solution of (G,~). According to Eq. (24), we have

cos(Δ\ ) =
("�1 −"�2)

2 + 2"�1 ·"�2 − �1�2
2

2"�1 ·"�2

=

(Δ')2 + 2"�1 ·"�2 − 432

2"�1 ·"�2
.

(25)

According to Eq. (25), we have

"�1 ·"�2 =
(Δ')2 − 432

2(cos(Δ\ ) − 1)
. (26)

Then we have the area of △�1"�2 as

(△�1"�2 =
1

2
"�1 ·"�2 · sin(Δ\ )

=

(Δ')2 − 432

4(cos(Δ\ ) − 1)
sin(Δ\ ) .

(27)

Finally, the location is

~ = ±
(△�1"�2

�1�2
= ±

(Δ')2 − 432

83 (cos(Δ\ ) − 1)
sin(Δ\ )

G =

√√

( Δ'2 )2~2

32 − ( Δ'2 )2
+ (

Δ'

2
)2

(28)

G is always positive to ensure the device is in the room. We can

also ensure ~ positive by placing the speaker adjacent to another

wall.

3D localization: If we know the device’s height, we can extend

our model to 3D localization. Compared to (G,~), height I is usually

held constant or alternates between several potential values (e.g.,

head-mounted devices typically have a height close to that of a

person). Considering the device’s height, Eq. (23) changes to

G2

( Δ'2 )2
−

~2 + I2

32 − ( Δ'2 )2
= 1 (29)

which is a hyperboloid. Eq. (24) changes to

cos(Δ\ ) =
2G2 + 2~2 + 2I2 − 232

2
√

(G + 3)2 + ~2 + I2 ·
√

(G − 3)2 + ~2 + I2
(30)

Using Eq. (29), Eq. (30) and I = Î, where Î is the input device

height, we can fully determined (G,~). We use Matlab’s Symbolic

Math Toolbox to solve the system of equations.

4 IMPLEMENTATION

As illustrated in Fig. 12, we implement LEAD using all unmodi-

fied commercial off-the-shelf devices, including a Redmi 8A smart-

phone [31], a Xiaomi 11 smartphone [32], a ReSpeaker 4-mic lin-

ear array [33], a Raspberry Pi 4B [34], and one unit of the semi-

omnidirectional Philips SPA20 speaker [35]. Two microphones on

Redmi 8A and Xiaomi 11 are positioned 15.5 cm and 16.5 cm apart,

respectively. The distance between two adjacent microphones is

5 cm on the microphone array. We evaluate LEAD’s performance

with smartphones and two microphones placed at distances of 5

cm, 10 cm, and 15 cm on the microphone array. These microphone

distances are commonly used in smart devices. We connect the mi-

crophone array to the Raspberry Pi. The smartphone and Raspberry

Pi send recorded audio wirelessly to a laptop. The laptop runs our

MATLAB code to analyze the audio and calculate the location of
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Figure 9: Overall localization error, and
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Figure 11: Localization error across device
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Figure 12: The smartphone, 4-mic array, Raspberry Pi, and

speaker.

the smartphone and microphone array. We assume that the sound

speed is 343 m/s. We use a widely supported 48 kHz sampling rate.

5 EVALUATION

5.1 Methodology

We evaluate our system in three everyday environments: a 4m ×

3m conference room, a 5m × 4m corridor, and an 8m × 4m living

room. The conference room has many chairs and tables, and the

living room has two chairs and a desk near the wall. The heights

of these rooms are 3 meters. We put a Philips SPA20 speaker on

a desk. The speaker’s distance to the nearby wall ranges from 0.4

m to 0.9 m. We set the speaker volume to 15% and sent inaudible

chirp signals, whose frequency and duration are 18-22 kHz and 20

ms. These features of small volume, ultrasonic frequency, and short

duration make the signal barely audible to humans and minimize

interference with the speaker’s regular operation.

To illustrate the advantages of LEAD in accurately estimating

distance and direction. We compare the localization accuracy of the

following schemes with LEAD. (1) GCC-PHAT [20] is a generalized

cross-correlation algorithm. It whitens signals by equalizing all

frequencies to achieve better accuracy than cross-correlation. (2)

Distance-MUSIC [6, 18] can estimate distance with super-resolution.

(3) VoLoc [14] is the state-of-the-art (SOTA) algorithm for locating

voice. It is an iterative align-and-cancel algorithm designed to en-

hance multipath direction estimation. We allow VoLoc to use the

distance result from GCC-PHAT as VoLoc can only estimate direc-

tion. Notice that GCC-PHAT and Distance-MUSIC calculate relative

distances to each microphone in the array and then map the dis-

tances to directions. We do not compare LEAD with Symphony [13]

because it is proposed for multiple sources. In our scenario, the sin-

gle speaker is the only source. Symphony’s performance is reported

to be worse than VoLoc for a single source [13]. Furthermore, it

Figure 13: LEAD’s localization error heatmap in the living

room. The speaker and furniture are denoted.

requires at least three microphones, which may not be available on

some devices.

To evaluate the impact of different factors on performance, we

varied the room, device position, height, spacing, orientation, speaker

placement, environmental clutter, and noise level. We obtain the

ground-truth location with a laser measure and a measuring tape.

5.2 Overall Performance

Localization error across rooms: We show the CDF of LEAD’s

overall localization errors across different rooms and the errors in

each room in Fig. 9. The median overall error is 0.29 m. The median

errors in the living room, corridor, and conference room are 0.37

m, 0.31 m, and 0.11 m, respectively. The error increases as the size

of the room expands. Due to the small size of the conference room,

the error in the conference room is significantly lower than in the

living room and corridor. We believe such localization accuracy

will facilitate the development of many location-based applications,

e.g., automatically controlling appliances when moving in a room.

Localization error across distances: We show LEAD’s local-

ization error across different device-to-speaker distance groups in

Fig. 10. We group the distances by near (in 2 m), medium (2 m to

4 m), and far (over 4 m). Their median errors are 0.12 m, 0.33 m,

and 0.36 m, respectively. The SNR decreases when the distance

increases, which causes larger errors in the estimation of distance

and direction differences and leads to a larger localization error.

Moreover, the direction difference changes slightly when the device

moves at a far distance. The same direction difference error will

cause a larger localization error at a farther distance.
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parison of different schemes.
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crophone orientations.

We present LEAD’s localization error heatmap of the living room

in Fig. 13. The speaker is placed on a desk 0.5 m from the wall. We

observe large errors in the four corners due to their considerable

distances and denser multipath interference. The large error on

the south side is due to long distances and multipath interference

caused by the wall and chairs present there.

Localization error across heights: We conduct experiments

by placing the speaker on a 0.75 m high desk and varying the

device’s height. LEAD requires knowing the device’s height when

performing 3D localization. We use the height measured by a mea-

suring tape. Fig. 11 shows the localization error across different

heights. The median errors are 0.35 m, 0.25 m, 0.29 m, and 0.28 m

for device heights of 0.75 m, 1.1 m, 1.45 m, and 1.8 m, respectively.

When the device’s height is accurate, the 3D localization model

of LEAD degrades to a 2D localization model, resulting in similar

errors across different heights.

In daily use, the device’s height is measured in advance or esti-

mated by users. The height error will cause the final localization

error. We introduce a height error to LEAD and simulate the result-

ing 2D-plane localization error in the living room shown in Fig. 14.

The error increases as the height error increases. The median errors

are 0.05 m, 0.11 m, 0.20 m, 0.31 m, and 0.45 m for height errors of

0.3 m, 0.6 m, 0.9 m, 1.2 m, 1.5 m, respectively. In the worst case, if

all heights are directly input as 1.5m, the maximum height error

in a 3m height room would be 1.5 m, with a maximum median

localization error of 0.45 m. Thus, we believe the localization error

is acceptable even if an inaccurate height is input to LEAD.

5.3 Comparisons with Other Schemes

Localization error: We compare LEAD with two commonly used

methods for acoustic localization, GCC-PHAT [20] and Distance-

MUSIC [6, 18] and a SOTAmethod used for voice localization called

VoLoc [14]. We show the result in Fig. 15. Median localization errors

of LEAD, VoLoc, GCC-PHAT, and Distance-MUSIC are 0.29 m, 0.78

m, 1.02 m, and 0.68 m, respectively. LEAD reduces the median error

of VoLoc, GCC-PHAT, and Distance-MUSIC by 62.8%, 71.6%, and

57.4%, respectively. LEAD has superior accuracy because GCC-PHAT

and Distance-MUSIC are two-step approaches. They first estimate

distances, then group and map distances to directions. The distance

error will lead to a direction error, while LEAD jointly estimates the

distance and DoA to prevent error propagation. Furthermore, LEAD

creates virtual microphones to achieve super-resolution directional

accuracy. VoLoc has poor accuracy because it does not use the

features of transmitted chirp signals. Other methods utilize dechirp

to enhance SNR.

Distance difference error: The distance difference constrains

the device location to a hyperbola (hyperboloid) for 2D (3D) local-

ization. We compare the accuracy of estimated distance difference

using different schemes, shown in Fig. 16. Median errors are 2.0 cm,

4.0 cm, and 2.5 cm for LEAD, GCC-PHAT, and Distance-MUSIC, re-

spectively. The signal’s bandwidth mainly limits the accuracy of the

distance difference. LEAD and Distance-MUSIC are subspace-based

super-resolution schemes, achieving better distance difference ac-

curacy than GCC-PHAT.

Direction difference error: The direction difference is used to

localize a point on the hyperbola (hyperboloid). We compare the

accuracy of estimated direction difference using different schemes,

shown in Fig. 17. Median errors are 0.7°, 3.7°, 2.7°, and 2.6° for LEAD,
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sic played by the smart speaker.

VoLoc, GCC-PHAT, and Distance-MUSIC, respectively. LEAD re-

duces the median error of VoLoc, GCC-PHAT, and Distance-MUSIC

by 81.0%, 74.1%, and 73.1%. LEAD performs best because (1) LEAD

utilizes the sub-space method to estimate direction difference. It

has super-resolution. (2) LEAD generates virtual microphones by

proposed decomposed 2D-MUSIC. More effective microphones im-

prove direction difference accuracy. (3) LEAD’s direction difference

accuracy is mainly limited by the microphone numbers, while GCC-

PHAT’s and Distance-MUSIC’s are limited by both microphone

numbers and chirp’s bandwidth. GCC-PHAT and Distance-MUSIC

first estimate the speaker’s distances (limited by bandwidth) to

different microphones, then map distances to direction difference

(limited bymicrophone numbers). VoLoc has poor accuracy because

it is not customized for the chirp signal.

In summary, LEAD has better distance difference and direction

difference accuracy, resulting in its superior localization accuracy

compared with other schemes.

5.4 Impact Factors

We conducted experiments in the conference room to evaluate the

impact of various factors on localization performance.

Localization error across microphone spacings: Spacing

between microphones on the device affects the localization error.

Fig. 18 shows the localization error using two microphones with

different spacing. The localization error increases when the spacing

increases. Median errors are 0.12 m, 0.20 m, and 0.31 m for micro-

phones spaced by 5 cm, 10 cm, and 15 cm on the microphone array,

respectively. Median errors for the Redmi 8A and Xiaomi 11 are 0.24

m and 0.28 m, with microphone spacings of 15.5 cm and 16.5 cm,

respectively. The errors remain consistent across different devices

when microphone spacing is consistent. The error increases when

the spacing increases because (1) We calculate the direction differ-

ence under the far-field assumption [21]. The assumption becomes

less valid as the spacing increases. (2) Larger spacing causes more

direction ambiguities. It is harder for LEAD to disambiguation. To

optimize LEAD’s performance and to deploy on small devices like

smartwatches, we can use microphones spaced by 0.86 cm (half the

wavelength of a 20 kHz signal).

Localization error across microphone orientations: Micro-

phones on the device have different DoA resolutions across different

impinging directions. Fig. 19 shows the localization error across

microphone orientations. We denote 0° and 180° as the orientation

when the microphone connection is parallel to the connection of

(a) Sparse (b) Moderate (c) Dense

Figure 23: Clutter Settings.

the real and virtual speaker. Median errors are 0.12 m, 0.14 m, 0.24

m, and 0.54 m for 0° (180°), 45°, 90°, and 135°, respectively. The error

is large at 135° because the sounds from speakers arrive at the mi-

crophones at a small angle. The microphones’ direction resolution

is bad when the impinging angle is small. This phenomenon occurs

in linear microphone layout. A circular layout array guarantees

performance in all orientations.

Localization error across speaker-to-wall distances: LEAD

exploit the nearby wall to create the virtual speaker. The speaker’s

distance to the wall will affect the localization error. Fig. 20 shows

localization errors in different speaker-to-wall distances. Median

errors are 0.40m, 0.21m, and 0.27m for distances of 0.4 m, 0.6 m, and

0.9 m, respectively. Our model performs worse when the speaker is

too close to the wall than when the real and virtual speakers are

close. Close speaker distance leads to small distance and direction

differences, which are challenging to estimate accurately. So, a

distance of 0.6 m is more accurate than a distance of 0.4 m. However,

the virtual speaker’s SNR degrades as the speaker-to-wall distance

increases. That is why the accuracy in 0.9 m distance decreases.

Localization error across clutter levels: Sound multipath

reflected by near objects may arrive at the devices earlier than that

reflected by the wall. The objects will even block sounds from the

real and virtual speakers, causing non-line-of-sight (NLoS) issues

and leading to localization errors.We put objects around the speaker

to create sparse, moderate, and dense clutter settings shown in

Fig. 23. With the clutter level increasing, the localization error

increased as we expected. The result is shown in Fig. 21. Median

errors are 0.15 m, 0.38 m, and 0.82 m for sparse, moderate, and

dense settings.

Localization error across noise levels: Noise will impact the

localization accuracy. The noise may be the room’s background

noise. It may also refer to the sound emitted by the speaker during

regular use, e.g., playing music. We record common human talking
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noise and use another speaker to play noise sounds. We also control

the smart speaker to play chirp signals and music simultaneously.

The noise sound level around the device is approximately 60 dB.

Fig. 22 shows LEAD’s localization error across different noise types.

The median errors are 0.21 m, 0.20 m, and 0.24 m for quiet, play-

ing music, and human talking, respectively. The localization error

hardly increases when there are noises because LEAD uses 18-22

kHz chirp signals. The frequency band is far away from that of

audible sounds. Additionally, the chirp signal is resistant to noise.

The error is slightly larger when the speaker simultaneously plays

music because the speaker’s nonlinear effect may generate noise

in the ultrasonic frequency band [36]. We add full-band additive

white Gaussian noise (AWGN) to the recorded data. The median

errors are 0.20 m, 0.27 m, and 0.68 m for SNR of 0 dB, -5 dB, and -10

dB. Due to the chirp signal and MUSIC’s anti-noise ability, LEAD is

still accurate in SNR of -5 dB. Increasing the signal duration can

further improve the anti-noise ability [37].

Summary: We summarize the impact factors and share our

deployment experience. The minimum requirement for deploying

LEAD is to position a speaker, which can be on any device, near awall.

Additionally, the smart device should have at least twomicrophones.

According to theories and experimental results, to achieve optimal

results, it is preferable to have asmanymicrophones on the device as

possible. A circular arrangement of the microphones is considered

the best option, with a microphone spacing of half a wavelength. An

omnidirectional speaker is optimal. The distance from the speaker

to the wall could be around 60 cm. Ensure that the LoS and Echo

from the wall are unobstructed. It is also important to minimize

in-band interference.

5.5 Computational Efficiency

Benefiting from our subsampled and decomposed 2D-MUSIC, LEAD

can efficiently work. We set the chirp’s duration to 10 ms, the sub-

sample ratio to 10, and the number of sub-chirps to 5. We measure

the processing time during the estimation of distance difference

and direction difference and compare it with VoLoc, GCC-PHAT,

Distance-MUSIC, and 2D-MUSIC [19]. We also test processing time

with Raspberry Pi of limited computing ability.

The processing times for LEAD, VoLoc, GCC-PHAT, Distance-

MUSIC, and 2D-MUSIC are 39.5 ms, 1257.4 ms, 29.1 ms, 67.2 ms,

and 2730.9 ms on a PC with an AMD Ryzen 7 5800H CPU, and 210.0

ms, 6268.5 ms, 159.1 ms, 339.0 ms, and 14475.0 ms on a Raspberry Pi

4B, respectively. LEAD achieves real-time localization with a refresh

rate of 25 Hz. The processing time is 1.7x and 68.9x less than that

of Distance-MUSIC and 2D-MUSIC because (1) LEAD first searches

distances, then direction difference to reduce the quadratic growth

of search time to linear growth. (2) LEAD utilizes the subsampling

method to estimate distance for acceleration. (3) LEAD utilizes the

decomposing method to estimate direction for acceleration.

6 RELATED WORKS

Acoustic localization: In recent years, many acoustic tracking and

localizing systems have been proposed. Some device-free systems

[4, 27, 38–44] rely on analyzing reflected acoustic signals from the

target. Many Other device-based systems [3, 5, 6, 15, 45–52] rely

on analyzing LoS acoustic signals. Some device-based systems use

single tone with Doppler shift (e.g., AAMouse [45] and Vernier

[49]) or FMCW with ToF (e.g., RABIT [6] and CAT [3]). These

systems require several speakers for localization, which are incon-

venient to deploy. AcouRadar and Nakamura et al. [46, 53] models

signal power’s relation to frequencies, distances, and directions to

achieve single-speaker localization. They need to measure every

speaker-microphone pair’s amplitude response in many positions

in advance, which is laborious. They cannot work well under mul-

tipath interference, causing a limited operation range (< 2 m) and

area (< 1.5 m2). SPiDR [54] and Owlet [55] use extra 3D-printed

structures to embed spatial information in the received signals for

localization. Fingerprint-based methods could work under a single

speaker, while they involve the time-consuming process of collect-

ing data and training models [56–59]. Some systems [12–14] use

nearby wall reflections to localize human voice. In their settings, the

microphones’ orientation is fixed and known. They use DoAs with

reverse tracing for localization. However, our devices may rotate,

so we propose a novel localization method combining distance and

direction differences.

RF localization: RF-based localization systems for commodity

mobile devices are limited by fast propagation speed, large wave-

length, and small bandwidth.WhilemmWave radar [28] can achieve

similar accuracy to acoustic localization, it requires expansive in-

frastructure. WiFi systems [30, 60–63] can achieve decimeter-level

localization accuracy. Arraytrack [61] employs MIMO-based tech-

niques to track devices at a high granularity level. Spotfi [30] pro-

poses a novel LoS DoA estimation algorithm from CSI. MonoLoco

[63] uses multipath reflections to localize a device with a single

receiver without needing device coordination. Chronos [60] utilizes

frequency hopping technology to compute ToF. [62] enables ubiq-

uitous WiFi sensing with compressed beamforming reports. UWB

systems that require extra infrastructures [64–66] use ultra-wide

bandwidth for localization to achieve cm-level accuracy. SALMA

[66] utilizes reflected paths for single-anchor positioning, but it

requires two-way ranging, reducing concurrency and requiring

additional speakers on smart devices.

Distance and direction estimation: Algorithms for acoustic

distance estimation including cross-correlation [5], GCC-PHAT

[20], MUSIC [6, 18], ESPRIT [26]. We can map distance differences

to the angle using distances to multiple microphones. Direction-

MUSIC [18] can directly estimate the direction. 2D-MUSIC [19] can

simultaneously estimate distance and direction. It is appreciated

for its superior accuracy and solid theoretical foundation.

7 DISCUSSION

Actively beacon or passively listen:Why not have smart devices

actively beacon signals and deploy the localization system on the

speaker? Instead, we allow smart devices to passively listen for sig-

nals and deploy the system on them. This passive listening approach

offers several advantages. First, it supports concurrently localizing

a large number of smart devices. Theoretically, the passively listen

scheme supports any number of devices with any relative distance.

If the smart devices actively beacon, signals may collide on the

speaker. Although some techniques like Time-Division Multiplex-

ing (TDM) and Frequency-Division Multiplexing (FDM) may avoid
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or alleviate collision, they require complex protocols between de-

vices and the speaker: TDM requires synchronizing devices while

FDM requires coordinate frequency bands between devices and

the speaker. Second, it protects privacy. Actively beaconing will

allow eavesdroppers to collect device location information. While

passively listening on the smart device has no such worries. Third,

to reduce smart devices’ power consumption. Smart devices are

usually battery-powered, while speakers are usually cable-powered.

Playing sound is usually more energy-intensive than recording and

analyzing sound. Last, it optimizes the user experience. The emitted

ultrasonic signal will not be perfect, and some audible leakage is

unavoidable. The smart device’s beacon may disturb the user be-

cause of the close distance to the user. We use the smart speaker as

a beacon to minimize user disturbance.

Resolve location ambiguities: LEAD resolves location with sev-

eral constraints, including distance difference, direction difference,

and power constraints. The distance difference is constrained by the

speaker-to-wall distance. The direction difference is an acute angle

for most locations. The LoS and Echo from the nearby wall have

stronger power than Echo from other smaller or further reflectors.

Non-line-of-sight: LEAD assumes the LoS path between the

speaker and the smart device exists. When the LoS path is blocked,

the calculated direction and distance differences will be erroneous,

resulting in localization error. Additional knowledge of 3D room

layout will help correct the location by considering more reflection

paths.

8 CONCLUSION

In this paper, we develop LEAD to localize multiple devices simul-

taneously with only one speaker. To address the limitations of

previous works, we introduce three key designs: a novel localiza-

tion model based on distance and direction differences between

LoS and Echo for solving the problem of unknown device orien-

tation, a sub-chirp-based virtual microphone generation method

for disambiguation and accuracy, a decomposing algorithm and

coarse-fine result searching strategy for efficiency. To demonstrate

LEAD’s robustness and effectiveness, we evaluate it under differ-

ent room, microphone, speaker, noise, and clutter settings. The

results demonstrate its feasibility and ability to support various

location-aware applications.
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